The correct answer is: 0.5 AExplanation: Electric power (P) can be calculated using the formula, P = VI. Rearranging for current (I), we get $ \displaystyle I=\frac{P}{V}=\frac{{60W}}{{120V}}=0.5A.$
The correct answer is: 24 sq. units Explanation: The area of the triangle formed by the vertices A(1,−1),B(−4,6) and C(−3,−5), by using the formula above, is given by $\displaystyle \dfrac{1}{2}$ ​[1(6 + 5) + ( − 4)( − 5 + 1) + ( − 3)( − 1 − 6)] =$\displaystyle \dfrac{1}{2}$ (11 + 16 +
The correct answer is: 180 cm Explanation: In rt. angled △ABP, $ \displaystyle \dfrac{{AB }}{{AP}}$ ​= sin30° ⇒ $ \displaystyle \dfrac{{60}}{{AP}}$​= $\displaystyle \dfrac{1}{2}$ ⇒ AP = 60 × 2 ⇒AP = 120 cm.  In rt. angled ΔADQ, $\displaystyle \dfrac{{AD}}{{AQ}}$ = sin30° ⇒$\displaystyle \dfrac{{30}}{{AQ}}$ =$\displaystyle \dfrac{1}{2}$​ ⇒ AQ= 30 × 2 ⇒AQ = 60 cm. Hence, AP + AQ = 120 +
The correct answer is: $\displaystyle \dfrac{{a\sin \left( {\alpha +\beta } \right)}}{{\sin \left( {\beta -\alpha } \right)}}m$ Explanation: Let BD be horizontal position of the lake and A be the given point at height h above it. If position of the cloud and its reflection be P and Q respectively, then from diagram ∠PAC = a
The correct answer is: 40 m Explanation: Also, let the distance between the tower (BD) and the cliff (AC) be d m. Thus, in â–³ABC, tan x = $\displaystyle \dfrac{{20}}{d}$ ​……(i) Also, in â–³CDE, tan x = $\displaystyle \dfrac{h}{d}$ ​………(ii) From equations (i) and (ii) $\displaystyle \dfrac{h}{d}$ ​= $\displaystyle \dfrac{{20}}{d}$​ ⇒h = 20 m ⇒ Height of the
The correct answer is: ₹1925 Explanation: Length of the fence (in meters) = $\displaystyle \dfrac{Total cost}{Rate}$ = $\displaystyle \dfrac{5820}{24}$ = 220 So, circumference of the the field = 220 m Therefore, if r meters is the radius of the field , then 2πr = 220 Or, 2 × $\displaystyle \dfrac{22}{7}$​× r = 220  or, r =